7 research outputs found

    Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins

    Get PDF
    IndexaciĂłn: Web of ScienceThe evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long term survival of the species.http://onlinelibrary.wiley.com/doi/10.1002/ece3.2502/epd

    Xenopus laevis and Emerging Amphibian Pathogens in Chile

    Get PDF
    Amphibians face an extinction crisis with no precedence. Two emerging infectious diseases, ranaviral disease caused by viruses within the genus Ranavirus and chytridiomycosis due to Batrachochytrium dendrobatidis (Bd), have been linked with amphibian mass mortalities and population declines in many regions of the globe. The African clawed frog (Xenopus laevis) has been indicated as a vector for the spread of these pathogens. Since the 1970s, this species has been invasive in central Chile. We collected X. laevis and dead native amphibians in Chile between 2011 and 2013. We conducted post-mortem examinations and molecular tests for Ranavirus and Bd. Eight of 187 individuals (4.3 %) tested positive for Ranavirus: seven X. laevis and a giant Chilean frog (Calyptocephallela gayi). All positive cases were from the original area of X. laevis invasion. Bd was found to be more prevalent (14.4 %) and widespread than Ranavirus, and all X. laevis Bd-positive animals presented low to moderate levels of infection. Sequencing of a partial Ranavirus gene revealed 100 % sequence identity with Frog Virus 3. This is the first report of Ranavirus in Chile, and these preliminary results are consistent with a role for X. laevis as an infection reservoir for both Ranavirus and Bd

    Widespread infection with hemotropic mycoplasmas in free-ranging dogs and wild foxes across six bioclimatic regions of chile

    Get PDF
    Indexación ScopusBlood samples of 626 rural dogs, 140 Andean foxes (Lycalopex culpaeus), and 83 South American grey foxes (L. griseus) from six bioregions of Chile spanning 3000 km were screened for Mycoplasma DNA by conventional PCR and sequencing. Risk factors of infection were inferred using Generalized Linear Mixed Models and genetic structure by network analyses. Overall, Mycoplasma haemocanis/Mycoplasma haemofelis (Mhc/Mhf) and Candidatus Mycoplasma haematoparvum (CMhp) observed prevalence was 23.8% and 12.8% in dogs, 20.1% and 7.2% in Andean foxes, and 26.5% and 8.4% in grey foxes, respectively. Both hemoplasmas were confirmed in all the bioregions, with higher prevalence in those where ticks from the Rhipicephalus sanguineus species group were absent. Candidatus M. haematominutum and a Mycoplasma sp. previously found in South American carnivores were detected in one fox each. Although the most prevalent Mhc/Mhf and CMhp sequence types were shared between dogs and foxes, network analysis revealed genetic structure of Mhc/Mhf between hosts in some regions. Male sex was associated with a higher risk of Mhc/Mhf and CMhp infection in dogs, and adult age with CMhp infection, suggesting that direct transmission is relevant. No risk factor was identified in foxes. Our study provides novel information about canine hemoplasmas with relevance in distribution, transmission routes, and cross-species transmission. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.https://www.mdpi.com/2076-2607/9/5/91

    Genetic Structure and Demographic History Should Inform Conservation: Chinese Cobras Currently Treated as Homogenous Show Population Divergence

    Get PDF
    An understanding of population structure and genetic diversity is crucial for wildlife conservation and for determining the integrity of wildlife populations. The vulnerable Chinese cobra (Naja atra) has a distribution from the mouth of the Yangtze River down to northern Vietnam and Laos, within which several large mountain ranges and water bodies may influence population structure. We combined 12 microsatellite loci and 1117 bp of the mitochondrial cytochrome b gene to explore genetic structure and demographic history in this species, using 269 individuals from various localities in Mainland China and Vietnam. High levels of genetic variation were identified for both mtDNA and microsatellites. mtDNA data revealed two main (Vietnam + southern China + southwestern China; eastern + southeastern China) and one minor (comprising only two individuals from the westernmost site) clades. Microsatellite data divided the eastern + southeastern China clade further into two genetic clusters, which include individuals from the eastern and southeastern regions, respectively. The Luoxiao and Nanling Mountains may be important barriers affecting the diversification of lineages. In the haplotype network of cytchrome b, many haplotypes were represented within a “star” cluster and this and other tests suggest recent expansion. However, microsatellite analyses did not yield strong evidence for a recent bottleneck for any population or genetic cluster. The three main clusters identified here should be considered as independent management units for conservation purposes. The release of Chinese cobras into the wild should cease unless their origin can be determined, and this will avoid problems arising from unnatural homogenization
    corecore